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A computing technique is presented for the calculation of threedimensional, time- 
dependent fluid dynamics problems. The full nonlinear Navier-Stokes equations are 
solved with a finite-difference scheme based upon an Arbitrary Lagrangian-Eulerian 
(ALE) computing mesh with vertices that may move with the fluid (Lagrangian), remain 
fixed (Eulerian), or move in any prescribed manner. The method is applicable to three- 
dimensional flows at all speeds, employing an implicit formulation similar to the Implicit 
Continuous-Fluid Eulerian (ICE) technique. Marker particles are used that may follow 
exactly the motion of the fluid to aid in flow visualization, or they can represent par- 
ticulate matter whose behavior is affected by inertia, drag, gravity, and molecular and 
turbulent diffusion. Calculational examples are shown in the form of a variety of per- 
spective view plots. 

I. INTRODUCTION 

A new numerical method using a mixed Lagrangian-Eulerian finite-difference 
mesh has recently been developed by Hirt et al. [I]. The method is described in [l] 
for the solution of a wide variety of problems involving two-dimensional or 
axisymmetric fluid flow at all speeds. It has proven to be advantageous over other 
finite-difference methods for solving the full nonlinear, time-dependent Navier- 
Stokes equations primarily as a result of the Arbitrary Lagrangian-Eulerian 
computational mesh (the ALE feature) together with the implicit treatment of the 
density and velocity similar to the Implicit Continuous-Fluid Eulerian (ICE) 
method [2]. 

In this paper, an extended version of the ICED-ALE computing technique is 
presented for calculating the fully three-dimensional dynamics of flow at any 
speed contained within arbitrarily shaped boundaries. This three-dimensional 
version is based upon a network of six-surfaced, deformable volume elements, 

* This work was performed under the joint auspices of the US Atomic Energy Commission 
and the Defense Nuclear Agency (DNA Subtask No. HC-061, DNA Work Unit No. 15 Cal- 
culations at Low Altitude). 
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each defined by eight vertices, which may (1) move with the fluid (Lagrangian 
mode), (2) remain fixed with the fluid moving through cells (Eulerian mode), 
or (3) move in a prescribed manner in relation to the moving fluid (Arbitrary 
Lagrangian-Eulerian). 

Various schemes for calculating three-dimensional flows have previously been 
reported. Many of these, however, are restrictive in range of applicability, applying 
only to a very specific set of problems. Examples are procedures for blunt body 
flow [3], steady, chemically reacting nozzle flow [4], flow between two concentric 
cylinders [5], steady flow in ducts [6], and steady flows with recirculation [7]. 
There have also been reported several numerical methods that apply to a wider 
range of three-dimensional flow problems. Eulerian finite-difference techniques 
have been developed for the three-dimensional, transient dynamics of an incom- 
pressible fluid [8], as well as for a compressible fluid [9], and are most useful for 
problems involving large fluid distortions. Their main disadvantages are related 
to difficulties in accurately resolving free surfaces or material interfaces and treating 
curved or moving boundaries. Lagrangian methods overcome some of these 
disadvantages, but are not applicable to flows undergoing large fluid distortions. 
One such method for three-dimensional compressible flow problems has been 
briefly reported by Wilkins [lo]. 

The advantages of the ICED-ALE method over previous methods becomes 
evident in considering the complex nature of transient three-dimensional fluid 
flows, especially in view of the restrictions imposed by present-day computer 
capacity and cost. The principal advantages are derived from the following 
features. 

(1) The solution technique for the fully three-dimensional, nonlinear, time- 
dependent Navier-Stokes equations provides for a wide scope of applica- 
bility. 

(2) Implicit features allow for efficient solution of flows of all speeds, from 
low speed (incompressible) to high speed (compressible). 

(3) Arbitrary Lagrangian-Eulerian zoning permits optimal use of computa- 
tional zones, allows for the calculation of flows involving curved or moving 
boundaries, and makes possible calculations with minimum computational 
diffusion without excessive grid distortions. 

Sample flow calculations shown in Section VIII were run on a CDC 7600 
computer with a small core memory (SCM) capacity of 58,ooO words and large 
core memory (LCM) capacity of 400,000 words. Maximum allowable mesh size 
and calculation time per cell per cycle depend on a number of related factors. 
Calculation time per cell can be significantly reduced by storing various geometric 
factors used frequently. Unfortunately, this increase in storage requirements 
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may then too severely restrict allowable calculational mesh size. The number of 
marker particles, as well as the manner in which these move through the mesh, 
also affect maximum mesh size and calculation time. These factors clearly impose 
restrictions on three-dimensional flow calculations: however, the examples demon- 
strate that we nevertheless can perform numerous meaningful and interesting 
calculations even with limited resolution. Running the double burst calculation 
shown in Section VIII, for example, with our unoptimized developmental code, 
required approximately 100,000 LCM words, 40,000 SCM words, and 3.5-4.0 msec 
per cell per cycle calculation time. 

II. DIFFERENTIAL EQUATIONS 

The differential equations to be solved can be expressed rather compactly with 
the aid of Cartesian tensor notation as: 

G$/w + @P~j/W = 0, (1) 

(4J@t) + (a/w(pw - Pii) = gip, (2) 

(apE/at) + (a/axj)(pujE - pijui - pB(aI/axj)) = puigj . (3) 

The total specific energy E is defined by E = 4~~” + I. The stress tensor pif 
includes both the scalar pressure and the viscous stress and is written 

pij = --@ii + *heekSij + tei , (4) 

where p, the scalar pressure, is a prescribed function of the density p and of the 
specific internal energy I; 6, is the Kronecker delta; and 

The viscosity coefficients, X and p, have, for simplicity, been chosen as constants 
and yield terms that, for compressible flows, demonstrate similarity to the 
“artificial” viscosity terms ordinarily used in numerical fluid dynamics calculations. 
The heat conduction term, often written in terms of T, the temperature, has been 
altered by introducing the coefficient B. In Eqs. (2) and (3) gi represents a body 
acceleration term, which in most cases is gravity. 

Equations (l)-(3) express conservation of mass, momentum, and energy, and 
are of the basic conservation law form, which can be written in differential form as 

(a~jat) + (aww = c (5) 

where A represents a quantity per unit volume, Ci its flux in the j direction, and F 
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denotes the density of an external volume source. Equation (5) is fundamentally 
an expression of the rate of change of quantity A, constrained in a selected volume 
element of fluid bound by surface S, as a consequence of both external influences 
and fluxes at the volume element boundaries. This can be more easily seen by 
integrating Eq. (5) over a volume element fixed in space. 

k I A dV + J’ Cjnj ds = j FdV. 
V s V 

(6) 

As we see in the next section, this integral form is easily related to our computa- 
tional grid, where the volume integrals are taken over a finite volume V, specified 
by our six-surfaced computational cells. The surface integral is over the nonplanar 
surfaces of these finite volume elements, with ni denoting the outward normal to 
the surface. A typical computational cell is shown in Fig. 1. More detail is given 
in the next two sections on the exact form of the finite-difference approximations 
as obtained from the integral form of Eqs. (l)-(3). 

FIG. 1. Typical cell layout with i, j, k indices and cell variable placement. 

III. METHOD OF SOLUTION 

The finite-difference approximations of Eqs. (l)-(3) are solved in a sequence of 
steps or calculational cycles, each advancing the solution a finite interval 6t in 
time. The results of each cycle are calculated from data remaining from the previous 
cycle, or supplied as initial conditions, and are constrained by prescribed boundary 
conditions. The calculational sequence for each cycle is as follows. 

(1) New velocities and energies are calculated from pressures and densities 
left over from the previous cycle. Although mesh vertices are not yet 
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actually moved, this stage of the calculation is performed on the basis of 
a pure Lagrangian approach, i.e., no fluid is fluxed across calculational 
cell boundaries. 

(2) An iteration involving velocities, pressures, and densities is performed to 
obtain advanced-time pressure forces. This procedure allows sound signals 
to travel throughout the entire mesh in a time at, rather than being restricted 
to one cell width by the usual Courant-like numerical stability condition. 

(3) Calculational cell vertex positions can be moved, and the appropriate 
convective fluxes calculated in any of three options: 

a. with the fluid velocity (pure Lagrangian); 
b. back to their respective beginning-of-cycle positions (pure Eulerian); or 
c. any other prescribed manner (mixed). 

(4) Final end-of-cycle values of energies, volumes, etc., are computed for use 
in the cycle that follows and a variety of output plots and prints may at 
this time be generated. 

Since the calculational mesh is made up of six-surfaced volume elements whose 
eight vertices may be allowed to move with the fluid, the starting point for the 
derivationof the finite-difference equations is the integral form(Eq. 6)of Eqs. (l)-(3). 

s y~dV+SP(Eli-u~)n5dS=0, s 
s ,% dV’ + f [pu&+ - Uj) - pij] ni ds’ = svg,p dV’, (8) “S 

s .$$ dV + s, [pE(uj - Uj) - piiui - /LB%] n, ds = f, pujgj dV. (9) 

Here, Uj is the velocity of the bounding surface s. The integration control volume 
specified in Eqs. (7) and (9) is the computational cell itself. Figure 1 shows one 
such cell defined by eight vertices labeled by integer triplets (i, j, k) counting in 
the X, y, z direction, respectively. Cell centers are denoted by (i + 4, j + +, k + $). 
Also shown are the locations in the cells at which the variables are assigned. 

Because of the staggered locations of the variables, Eq. (8) requires a momentum 
integration control volume (denoted by prime quantities &’ and dV’) that is 
shifted one-half cell height down, one-half cell width to the left, and one-half cell 
depth forward from the volume used in the other two equations. In this way, the 
integration volume around a cell vertex is defined by the geometric centers of 
volumes, faces, and edges of the eight cells surrounding the vertex as shown in 
Figs. 3 and 5. 



THREE-DIMENSIONAL FLOWS 137 

Basic to a conservative set of finite-difference equations for an irregular, deform- 
able calculational mesh is an accurate and unique means of defining, in terms of 
computing cells, surface area elements, ds and ds’, as well as the volume elements, 
dV and dV’, appearing in integrals (7)-(9). The four vertices of a face of a com- 
puting cell define a ruled surface rather than a planar surface. Its area can be 
calculated by subdividing it into four triangular planes with a common vertex 
at the geometric center, as illustrated in Fig. 2. With surface area elements ds, , 

FIG. 2. Subdividing a computational cell face into four triangular planes. 

ds, , ds, , and ds, , we can associate the vectors ds, , dsp , ds, , and ds, , which 
have the direction of the normal chosen on their respective elements and have 
lengths equal to their areas. By introducing the vectors a,, a2, a3, and a4 along 
the four concurrent triangle sides, we can evaluate these surface area element 
vectors as 

where 1 = 1,2,3, and 4 (when I = 4, I + 1 = l), and the sign is chosen to represent 
the outward normal direction. Surface integrals in Eqs. (7) and (9) can be approxi- 
mated by expressions of the form, 

(11) 

where I denotes cell vertices and m denotes cell faces. We can illustrate this operator 
by evaluating, for one of the six calculational cell faces, relation (11) for C = u. 
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gl (uz * ds,) = i (Uz a’s xz + 6 ds yz + Wz ds zz) 
Z=l 

= u,dsx, + &dsy, + W,dsz, 

+u,dsx,+~,dsy,+w,dszz 

+ ii3 ds x3 + i& ds y3 + W3 ds z3 

+ii4dsx4+.4dsyd+W4dszq, 

where, for example, 

ds xl = 3Kvl - Y& - 4 - (~1 - UYZ - vc)l, 
~SY, = Nx, - x&l - 4 - (~1 - xc)(z, - 41, 
ds=, = Nxl - xc)(vz - YJ - (~1 - Y& - xdl, 

are the x, y, and z components, respectively, of surface element 

(12) 

(13) 

ds, = +(a1 x a2), (14) 

and denote the areas of the projection of the triangle on the yz plane, xz plane, 
and xy plane. 

In these expressions x1 , y1 , z1 denote the values of x, y, and z at vertex 
number 1; and x, = $(x1 + x2 + x3 + x4), y, = t(vl + y2 + y3 + YJ, and 
z, = $(.zl + z2 + z, + ZJ denote the values at the geometric center of the face. 
The bar quantities represent velocity components associated with their respective 
surface elements. For example, the X, y, and z components of velocity associated 
with surface element ds, are, respectively, 

where 

and 

Ul = @I + u2 + UC), 
5, = HUl + & + UC), (15) 

% = HWl + w2 + WC), 

UC = t(% + u2 + u3 + a, 

21, = $65 + %2 + u3 + %I, (16) 

WC = Wl + w2 + w3 + WJ. 

A similar procedure is followed in defining surface areas bounding the offset 
momentum control volumes. In this case, however, the area of each face is obtained 
by dividing it into eight triangular planes, with vertices defined at geometric 
centers of computational cell volumes, faces, and edges, as illustrated in Fig. 3. 
For ease of illustration we have shown here only one of the six faces of the momen- 
tum control volume enclosing the dotted vertex. Let ds’ represent a planar trian- 
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gular surface area element. With ds’ can be associated the area element vector ds’, 
which is evaluated in terms of appropriate vector products. It is convenient to 
combine pairs of triangular planes lying in the same computational cell and work 
with the resulting quadrilateral volume elements as illustrated by the shaded 
areas in Fig. 3. For each computational cell there will be three such quadrilateral 
elements associated with each vertex designated as shown in Fig. 5. 

FIG. 3. Subdividing a momentum control volume face into triangular planes. 

Volumes of computational cells are calculated by uniquely subdividing each 
into a set of tetrahedrons. The triangular faces of these tetrahedrons are defined 
by the geometric centers of the calculational cell itself, together with the triangular- 
shaped differential surface elements previously defined. As an illustration, Fig. 4 
shows one of the four tetrahedrons whose bases are the bottom face of a calcula- 
tional cell. The vertices are the geometric center of the cell (cm); the geometric 
center of ruled surface l-2-3-4 (cB); and cell vertices (1) and (2). The volume of 
the tetrahedron shown in this figure is 

where c = cBc, . 
(17) 

The volume of the calculational cell can then be expressed as 

where 1 denotes cell vertices (mod 4) and m denotes cell faces. 
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FIG. 4. One of the 24 tetrahedrons contained within a computational cell. 

IV. FINITE-DIFFERENCE EQUATIONS 

Because of the long and tedious nature of the full set of finite-difference equa- 
tions used in the developmental program of this extended version of the ICED-ALE 
method, only selected portions of these equations are given here. These, together 
with a basic outline of the solution procedure should adequately serve to illustrate 
the technique. For a more complete description of the equations, flow charts, and 
available options, the reader is referred to [II]. 

The specific set of finite-difference equations chosen can take on a variety of 
forms, depending on such things as the nature of the specific application, the 
computer storage capacity, and the central processor speed. Those that follow 
are essentially direct extensions of the original ICED-ALE method described in [l]. 

Depending on available computer memory in relation to computational mesh 
size, increased efficiency may be obtained by calculating and storing various 
quantities at the beginning of each calculational cycle. These include: cell volumes 
V; cell face surface elements, ds X, ds y, ds z; cell total energy E; and masses 
assigned to cell vertices M,, . Sample finite-difference equations are given in the 
same sequence as the solution procedure steps described in the preceding section. 

A. Explicit Lagrangian Phase 

As noted earlier, this step calculates Lagrangian velocities resulting from the 
previous cycle’s pressure gradients, body forces, and viscous shear forces. The 
three components of velocity for a particular vertex are adjusted in this phase of 
the calculation according to the pressure and viscous forces acting on the six 
surfaces of the momentum control volume surrounding that vertex. This explicit 
advancement of velocities is divided into a series of steps. For example, the velocity 



THREE-DIMENSIONAL FLOWS 141 

components associated with the dotted vertex in Fig. 5 and denoted by the sub- 
script 0, are first advanced by the body force or gravity term, 

$i=;u+stgz, 

@ = ;v + St g, ) (19) 

,fz=;w+stg,. 

Here the tildes over the quantities on the left signify temporary new values, and 
the superscript n denotes last cycle values for the velocity component. Next, the 

FIG. 5. The heavy lines enclose the momentum integration control volume surrounding the 
dotted vertex. 
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velocity components are adjusted in response to the appropriate component of 
surface force across that portion of momentum control volume surface contained 
within each of the eight cells surrounding the vertex. In this way each vertex of 
a particular cell is in various stages of its eight-step incremental calculation 
process. For example, the dotted vertex in Fig. 5 undergoes a sequence of adjust- 
ments starting first in cell a, then cell b, and so on. To further illustrate, consider 
the advancement of velocity components at vertex 1, in response to pressure and 
viscous effects in cell g. The expressions for this adjustment are: 

where MI denotes the mass associated with vertex 1, and DS’ x1 , DS’ y, , DS’ q 
are the areas of the projections of that portion of the momentum control volume 
around vertex 1 that is contained within cell g, on the yz plane, xz plane, and the 
xy plane. 

The n terms here represent the six stress tensor terms previously expressed in 
Eq. (4). 

7T 2s = -P + AD + PL(KJ, 

nxy = &Y + 4, 

flxz = EL(uz + WA 

?T YY = -P + AD + ~(4, 

‘iTYZ = CloJa + WY), 

(21) 

7-r zz = -P + AD + ,4we). 

Here p is the scalar fluid pressure and D = U, + v, + w, . The x, y, and z sub- 
scripts denote approximations to the various spatial velocity derivatives. Examples 
are 

(22) 
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The exact choice of solution form for the energy equation is somewhat arbitrary 
and may, to some extent, depend upon the specific application. Regardless of the 
specific form chosen, however, the principle of conservation of total energy 
provides appropriate guidance for the finite-difference equation derivation. 
Reference [12] contains a detailed description of a procedure for solving the 
internal energy equation directly while exactly conserving total energy. In summary, 
the idea is the following. During any calculational cycle, the change in energy of 
the fluid must balance the work done on the fluid by all the stresses. This is most 
conveniently thought of in terms of work done by a particular cell on the eight 
vertices of that cell. This must produce a corresponding change in the internal 
energy (a cell-centered quantity). Work done is easily calculated as the product of 
the force exerted and the resultant displacement. Total energy conservation is 
achieved by meeting two conditions. First, the same force terms must be used in 
calculating the change in internal energy as was used in the calculation producing 
the respective changes of velocities (i.e., the changes in kinetic energy). Second, 
the displacement that the fluid undergoes as a result of the acting forces must be 
time-centered. 

We have chosen to advance the specific internal energy in parallel with velocity 
advancement. This simplifies the task of using the same force type terms in both 
calculations. Again with the tilde sign signifying a temporary quantity, the expres- 
sion to explicitly advance the internal energy is 

I” = “I+ @t vw[p(u, + 6, + @*I + (nm --P>G! + CT,, -PI i& 

+ (i-r,, - P> W, + ~,,(u, + 4 + TTT,,(& + F3 + ~yz@z + %,)I. (23) 

Here the bar signifies a time-centered quantity such as U, = $(u, + ii,& and M 
denotes the cell-centered mass. 

B. Implicit Lagrangian Phase 

The equations are solved in this implicit Lagrangian step by an extension of 
the method described in [l]. The basic task of this implicit Lagrangian phase is 
to permit the propagation of sound signals throughout the computational mesh 
each time step or calculational cycle when the sound speed is large compared to 
the ratio of cell size to time step. In summary the procedure is as follows. 

(1) The velocities, pressures, and densities from the explicit Lagrangian phase 
serve as initial guesses for the iteration. 

(2) A change in pressure Sp is calculated and added to the field on the basis 
of one step in a Newton-type iteration scheme, as Sp = -[Q(p)/(aQ/ap)], 
where Q(p) relates changes in densities and velocities to pressure. 

(3) Velocities are changed to be consistent with the advanced pressure field. 
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(4) The resulting spatial variations in density are accounted for and conver- 
gence tests are performed. 

(5) The iteration is considered sufficiently converged when some criteria such 
as, / 8p 1 < (c) 1 PMAX 1 is satisfied, where typically E w 10e4. 

One sweep through the computational mesh is made for each iteration. During 
this sweep, steps (2~(4) are performed for each calculation cell. The expression 
first solved in step (2) is 

8~ = --oQ(p, P, N/Q,, (24) 

where 

Q(P, P, u) = (WWp - ‘9) + L~LD, (25) 

and Q, is some appropriate approximation to aQ/ap, which serves as a relaxation 
factor for the iteration procedure. This will be defined later. The superscript L 
denotes a current Lagrangian iteration level value. The current guess for the cell 
pressure is updated according to 

Lpnew = Lpold + ape 
(26) 

Velocity adjustments of step (3) are made for each of the eight vertices, each 
sweep through the mesh. The velocity changes for vertex 1, for example, are 

L new 
% = %;ld + (St/Ml)(8p DS’x,), 

L new 
Ul = Lv;ld + (St/M,)@p DS’y,), 

L new Wl = L~;ld + (St/Ml)(8p DS’z,). 

Finally, variations in density are accounted for by the expression 

L new 
P = r;o”ld + R(Lp, I), 

(27) 

(28) 

where R represents some appropriate equation of state function of pressure and 
energy. 

The relaxation factor Q, is basically a measure of the rate of change of Q with 
changes in p and, as such, serves to automatically control the iteration procedure. 
An efficient but stable progression toward the solution of the implicit relations 
(24)-(28) requires a reasonably good approximation of this term. A direct differen- 
tiation of Q would, especially for distorted meshes, yield an expression that 
would be very complicated and difficult to evaluate. A better way is to introduce 
into the first pass of the iteration a small pressure change, 8p, N (c) 1 pMAX 1 for 

all cells and allow the iteration to proceed as usual. New iteration-level velocities 
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and densities are then calculated, resulting in a new iteration-level value for the 
function Q(p, p, u). The relaxation factor for that cell for all remaining iterations 
is then given by, 

Q, = (Q""" - Q"'d)/8po. (29) 

Following the convergence of the iteration a final adjustment of internal energy 
is required to again insure the exact balance between the change in kinetic energy 
and the work done, in this case by the scalar pressure effects. 

LI = LI - (8t V/M)[(Lp - “p)(& + v, + W,)], (30) 

where the barred quantities are the “time-centered” velocities gradients of the 
form, 

u, = g(ii, + Q&J. 

In addition, in preparation for the next step of the calculation we must calculate 
and store for each cell a quantity representing the total energy. 

I!? = LI + (1/16M)[M,(~,~ + VI2 + WI21 + M2(u22 + Q2 + w2”> 

+ w(%2 + %2 + %2) + Md%2 + fLt2 + WJ2) + kMu52 + v52 + wfj2) 
+ M&s2 + Rs2 + ws2) + w(u,2 + q2 + %2) + &(us2 + vg2 + Jq32)1, (31) 

where the subscripts denote the eight different vertices for each calculational cell. 
All velocity terms are taken at the advanced-time Lagrangian level L. 

C. Rezone-Convective-Flux Phase 

If at this point in the calculation, all the vertices were moved with advanced- 
time Lagrangian velocities, allowing the calculational grid to exactly follow the 
fluid motion, the result would be a pure Lagrangian calculation, and no convective 
flux calculations would be required. As is well known for highly distorted flows, 
however, allowing the calculational mesh to exactly follow the flow quickly 
results in a disaster. Cells can turn inside out, producing negative volumes; they 
get stretched and distorted to the point where the finite-difference approximations 
no longer resemble the original equations. To prevent this, the ICED-ALE 
method employs a Rezone-Convective-Flux Phase designed to move the mesh 
relative to the fluid so as to maintain a reasonably undistorted mesh. This phase 
is divided into two parts: the calculation of the grid motion, and the fluxing of 
mass, momentum, and energy through the faces of the calculational cells in 
response to the relative fluid motion. 

There are numerous factors that affect the ideal mesh-moving prescription. 
Shearing flow, for example, would require a different prescription from that of 
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smearing and thereby be invalid for calculations of many classes of Aow problems. 

In some cases, local rectilinearity obtained by a prescription such as the one 

described in [12] provides the guidelines for the best mesh. In others, a simple 

averaging scheme is best. 

Since computational diffusion is proportional to the relative motion of the 

mesh with respect to the fluid, any reduction in this motion will result in less 

computational diffusion than for a conventional Eulerian calculation. Also in 

many cases additional advantages of an intermediate Eulerian-Lagrangian mesh 

are derived from the capability for allowing the zones to move in such an inter- 

mediate fashion as to produce finer zoning in areas of steeper gradients, as well 

as to produce zone orientation in a direction normal to the principal gradients. 

A further discussion of this balance in mesh-moving prescriptions between a 

reduction of relative grid motion and a reduction of grid distortion is given in [12]. 

In the rezone-type calculation shown in Section VIII, a simple centroid averaging 

scheme is used. In this the velocity of each vertex is chosen to reduce the displace- 

ment of the vertex from the average of the positions of the six closest vertex 

neighbors. Denoting this grid velocity by the superscript G, the expression to be 

solved for a typical nonboundary vertex (i, j, k) is given by 

%.j,k = LUi,i,k + (#/8t)(~ - ri,i,kh (32) 

where 

E = &(ri-l,j,k + h+l.j.k + %i-1.k + ri,i+l,k + b,k-1 + ri.i,k+l)p 

6t is the time step, $ is the proportion of grid averaging to be performed each 
calculational cycle, and r denotes the vertex positions. The new vertex positions 
are determined from the expression, 

(33) 

Following the determination of new vertex positions, the convective fluxes are 
calculated. Provided that # # 0, this results in a certain volume of fluid being 
exchanged between calculational cells. Together with the exchange of fluid is also 
an exchange of mass, momentum, and energy, all quantities that are to be 
conserved. 

To illustrate, consider two calculational cells, one on top of the other as shown 
in Fig. 6. If the relative grid motion is upward or downward, some incremental 
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volume of fluid will be exchanged between these two cells, through common 
face l-2-3-4, denoted by the subscript m. It is given by 

SF’, = St i [RUl ds x1 + RVz ds y, + RWI ds z,]~, 
l=l 

(34) 

where the superscript R denotes the grid velocity relative to the fluid velocity, 
determined by 

RU = Lu - GU 3 

Fluxing surface 

Relative 
grid motion 

FIG. 6. Fluid volume exchange between cells through face l-2-34. 

and the bar denotes average values determined as Eqs. (15). The accompanying 
exchanges of mass M and total energy E through this face are given by 

Q&n = @~w&W - ~4 Lo+ + (1 + Q> “p-1, (35) 
and 

WfE,) = @~mPNU - 4(np~i)+ + (1 + d’@-I. (36) 

Here the + and - subscripts refer to the cell centers above (positive z direction) 
and below (negative z direction), respectively. The donor cell weighting factor 01 
is given by 

% = %@ VTn/I wn I> + C2Pcl S~?nW+ + V-N, (37) 

where CX@ and /3,, are constants determining the type of fluxing desired. The choices 
are given in Table I. 

TABLE I 

Differencing Choice 

Centered 

Donor Cell 
Interpolated Donor Cell 

Mixed 

% A 
0 0 

1 0 

0 1 

otherwise specified 
- 
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Also accompanying a change in vertex position is an exchange of momentum 
between neighboring vertices. This convective flux of momentum is accounted 
for by computing the flow of momentum through the faces of the offset momentum 
integration control volumes described earlier, Just as in calculating the changes 
in cell-centered quantities, the fluid volume swept through the faces of these 
offset momentum control volumes must be calculated. 

Within the calculation itself, it is convenient to sweep through the mesh cell by 
cell, adjusting the velocity of each vertex of a particular cell in response to the 
convective flux of momentum through the faces of the momentum control volume 
contained within that particular cell. In this way all interior vertices reach their 
final value in a sequence of eight steps, with each step accounting for the momentum 
exchanged between pairs of vertices. 

For example, momentum convecting through the portions of the surface shown 
in Fig. 7 exchanges momentum between vertices 1 and 4, 2 and 3, 5 and 8, and 6 

FIG. 7. Momentum exchange between vertices 1 and 4,2 and 3,s and 8, and 6 and 7 through 
momentum control volume face denoted by the heavy dotted lines. 

and 7. The u-momentum exchange between vertices 1 and 4 through the shaded 
portion of the surface can be written: 

where 
sv;, = sqRU,, ds’x,, + Rij14 ds’y,, + Riq* dS’Zl& (39) 

is the fluid volume swept through momentum control volume surface element 
d& , whose areas of projection on the yz plane, xz plane, and xy plane are given 
by ds’xlc , ds’v,, , and ds’z,, . The velocity of surface element d& relative to the 
fluid is calculated as 

Rii 14 = a<Rul + RU4 + 2R%), 
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energy and are accomplished by making adjustments to the velocities of the 
boundary vertices. These adjustments are made at each of the three phases 
previously described. At a rigid wall, for example, the vanishing of all convective 
fluxes implies the vanishing of the normal velocity component. In the case of 
a no-slip condition the tangential velocity also vanishes. The general case of the 
free-slip rigid wall is the more difficult condition to handle because only the 
normal velocity is set to zero. If the boundary is nonplanar or does not correspond 
to one of the X, y, or z coordinate directions, the orientation of the boundary 
must first be determined; then all the three velocity components are adjusted 
so as to leave the two tangential velocity components unchanged while replacing 
the normal velocity with zero. In the example shown in Section VIII, only the 
simpler case of a rigid-free-slip reflective plane and the rigid-no-slip conditions 
are used. A procedure that provides a more general free-slip boundary capability 
for irregularly shaped and movable boundaries confining or obstructing the flow 
is described in [14]. 

Prescribed inflow and outflow conditions, as in the examples shown in Fig. (12) 
are easily determined by the fluxes that are required. 

VI. NUMERICAL STABILITY 

Calculations of three-dimensional fluid flows using the ICED-ALE method 
are restricted by the same form of numerical stability and accuracy conditions as 
for the two-dimensional flows [l]. Again, because of the generalized and varying 
relation between the computational grid and the fluid itself, as represented by 
the field variables, only general guidelines can be suggested. These are primarily 
based on analysis of simpler, fixed-cell finite-difference schemes and analogous 
systems of equations. These conditions pose two basic restrictions on the time- 
step size, one related to convection-type terms and one to diffusion and diffusion- 
like terms. 

The restrictions resulting from the convective flux of fluid through computa- 
tional cell boundaries is clearly also an accuracy consideration. It is expressed as 

where V is the average volume surrounding the fluxed quantity and R~ . ds gives 
the volume of fluid swept through the flux boundary. We can note here that for 
pure Lagrangian runs the relative velocity R~ = 0, and this restriction does not 
arise. 

Another restriction has as its basis the convective flux phase of the calculation 
but is related to computational diffusion From the convective flux approximations, 
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there arise certain truncation errors that behave as negative diffusion terms. 
In order that the calculation run stably, these must be eliminated as far as possible, 
by counterbalancing them with positive diffusion terms. Choosing the form of 
convective flux approximations, as discussed in the previous section, provides 
one means of control. A greater proportion of donor cell fluxing provides larger 
effective computational diffusion, which automatically occurs only where needed. 
Adjusting the actual diffusion terms in the momentum provides a more predictable 
means of control, especially if the coefficients are allowed to vary from cell to cell 
as needed. In practice these can be used to provide a means for regulating the 
time step for the calculations, and one can include an option for an automatic 
determination of the viscosity coefficients X and II. 

Finally, perhaps the most restrictive of the various numerical stability restrictions 
effectively limits the distance over which momentum can diffuse in one time step. 
Once again we are able to only estimate this, but experience has shown the validity 
of the following expression. 

St < [ WP + 4 p (& + + + &)1-l. 

The effective cell size, expressed here as 6x, 6y, and Sz, is defined as the average 
component distances of the four computational cell diagonals. 

A third, but somewhat different type of numerical stability-like disturbance 
may arise, This undesirable feature is manifested in a saw-tooth appearance of 
the Lagrangian grid, or an uneven appearance of the marker particles. It arises 
from alternating vertex drifting because of a lack of coupling between adjacent 
vertices in the Lagrangian phase. An effective means for controlling this form of 
distortion is to explicitly couple adjacent vertices by adding to each a small 
acceleration that reduces the relative velocities between it and its nearest neighbors. 
The prescription suggested in [l], when extended to three-dimensional flows, 
couples each vertex to its six nearest neighbors. Brackbill has suggested an alter- 
native prescription [15] coupling each to its nearest 18 neighbors. The second of 
these offers the advantage of adequately coupling adjacent vertices without adding 
excessive damping. 

VII. PARTICULATE TRANSPORT 

Marker particles are used in numerical fluid dynamics calculations for a variety 
of purposes. One common usage for Lagrangian marker particles that follow 
exactly the motion of the fluid is to aid in visualizing complicated, highly distorted 
flows. One example of this is shown on the right-hand side of Fig. 10. In this 
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calculation the particles allow us to follow the motion of two hot spheres of 
material rising in an ambient atmosphere. To avoid the numerical difficulties of 
a Lagrangian computational mesh, the run shown has been continuously rezoned 
and translated upward. While this allows us to follow the collapse and distortion 
of the bubbles, it also means that material is being fluxed through cell boundaries 
so the calculational mesh motion no longer represents the actual fluid configura- 
tion. Other, somewhat different examples of applications for marker particles are 
illustrated in [16] for incompressible flow through curved vessels. The purpose 
for the particles in this is to aid in the examination of secondary flow effects for 
several configurations similar to the example shown in Fig. (12). 

Lagrangian marker particles are moved with the local fluid velocity each time 
step. The velocity of each particle is obtained from a trilinear interpolation among 
the particle’s eight nearest vertex velocities. The usual interpolation scheme 
cannot be directly applied because of the arbitrarily shaped and distortable 
computational cells. The generalized trilinear interpolation scheme is based on 
the concept of a one-to-one mapping of the X, y, z coordinates of the eight vertices 
of each cell onto a t, 7, c-coordinate system, where [, 7, and [ take on values 
between 0 and 1 in each cell. A schematic is shown in Fig. 8. The transformation 
is given implicitly in vector form as 

r = [(l - q)(l - 5) r1 + &Cl - 5) r2 + (1 - 4) rlu - 5) r3 

+ (1 - t)(l - $(l - 0 r4 + 4(1 - 7) 5rs + hh 
+ (1 - 0 r15b + (1 - OU - 7) 56 p (45) 

where rl through r8 denote the x, y, z coordinates of the eight cell vertices. The 
particle coordinates in & 7, 5 space can be determined by inverting transformation 
(45) with the aid of a Newton-Raphson iteration. In practice this converges very 

FIG. 8. Computational cell vertex positions in terms of a 6, 7, c-coordinate system, 
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rapidly even for cases in which the cells are badly distorted if, for each particle, 
the initial guess is the [,T, 5 from the preceding cycle. The transformed coordinates 
also provide a simple and efficient means for tracking the marker particles as they 
move through the computational cells. More specifically, we assume, when deter- 
mining the 5, q, 5 for a particular particle, that the particle lies in the same calcula- 
tional cell as last cycle, and for the vast majority of cases, this will be the case. 
If it is not, the newly computed values of 4, r], and 5 indicate the direction to 
move to locate the proper cell. Finally, an expression of the form of Eq. (45) in 
terms of velocities yields an appropriately interpolated velocity with which to 
move the particle. 

Another purpose of particles in flow studies is to represent particulate matter 
whose behavior is affected by inertia, drag exerted on the particulate by the fluid 
motion, gravity, and molecular and turbulent diffusion [17]. The capability for 
calculating time-varying, three-dimensional particulate motions in highly distorted 
fluid flows can be applied to solving a wide scope of complicated problems. One 
example is the problem of pollution dispersed in the atmosphere. The flow into 
which these pollutants may be emitted is likely to be distorted by odd-shaped 
buildings, hills, valleys and canyons, thus requiring for solution a fully three- 
dimensional capability. Another related example is an examination of particulate 
paths and deposition patterns in the trachea and bronchial passages of inhaled 
parcels of pollutants. A variety of flow examples closely related to the second of 
these two problems is given in [16]. The numerical prescription for determining 
the motion of these inertial particles is accomplished by assigning an equation of 
motion to each particle. An example of an equation which includes the additional 
effects of inertia, drag, and diffusion is given by 

du,ldt = (h - UP%) + ("diff/T) + 6% (46) 
where T can be thought of as the relaxation time for the particle velocity u, to 
become zero if the fluid velocity uf were zero. Alternatively T could be thought 
of as the reciprocal of the coefficient of Stokes drag divided by the mass of the 
particle. The average speed with which particles diffuse relative to the mean flow 
is indicated here by 

udiff = ((46t ii)““/&) erf-l(y), 

where y are random numbers on the interval 0 < y < 1, and X is the diffusion 
coefficient. 

VIII. SAMPLE APPLICATIONS 

To demonstrate the applicability of this newly extended version of the ICED- 
ALE computing method, we illustrate calculations for both high-speed and low- 
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speed flow examples. These include the interaction of two large heated spheres 
rising side-by-side in an ambient atmosphere and the flow of an incompressible 
fluid through a curved tube. These are presented as primarily qualitative examples 
to demonstrate a range of capabilities. Although we do not here attempt any 
detailed comparison with experimental or analytical data, proof testing and 
comparisons during the design and construction of the experimental program 
BAAL give considerable confidence in the validity of the calculations. For example, 
a variety of comparisons were made with a two-dimensional, axisymmetric 
version [l] of the ICED-ALE method with results that were almost identical. 
In addition, the examination of numerous examples of one-dimensional shock- 
tube problems yielded very favorable comparisons. 

One of the most satisfactory ways of presenting the enormous amount of data 
produced in calculations of three-dimensional flow fields is in the form of perspec- 
tive view plots. Hirt et al. [IS] have developed conceptually simple and efficient 
techniques for the presentation of data in this form for fixed, regularly spaced 
computational cells. A number of the features of these techniques can be readily 
adapted for use with the arbitrarily shaped cells in the work described here. These 
include perspective views of selected planes of contour lines, as well as views of 
velocity and vorticity vectors, grid plots, particle distributions, and contour 
surfaces. Other features such as hidden line removal and construction of contour 
plots in any arbitrary cross section through the calculational mesh are somewhat 
more difficult to extend. 

A. Compressible Flow 
In the first example, the initial configuration shows two hot, light (5O:l density 

ratio) spheres of radius 0.2 km embedded at an altitude of 3.0 km in a stratified 
atmosphere under pressure equilibrium. Perspective views of density contour 
lines and a density contour surface are shown, respectively, on the left and right 
sides of Fig. 9. An eye point of approximately 30” right of center was chosen for 
the contour surface plot to better demonstrate the three dimensionality of the 
interaction. These surfaces of constant, 60 % ambient density, show the front 
half of the two side-by-side, hot, light spheres as they rise and interact. The contour 
lines, viewed from the center position, show the density distribution in the vertical 
plane of symmetry that passes through the bursts’ centers. Representing the 
sphere initially rather coarsely in terms of a “stack” of rectangular solids results 
in some roughness or unevenness of the contour surface. However, a variety of 
truly three-dimensional aspects of the flow are evidenced in this sequence of 
frames. A comparison of the plots in the “back” vertical plane of the calculational 
grid and particles initially in the spheres shown in Fig. 10 shows the necessity for 
mesh rezoning. Clearly if the mesh itself were allowed to undergo the same amount 
of distortion shown by the marker particles, the calculation would have long 
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FIG. 9. Calculation of two, simultaneous, side-by-side explosions in the atmosphere. Plots 
shown at 0.3, 10.0, and 20.0 set are: on the left, lines of constant density in the yz plane of sym- 
metry, and on the right, surfaces of constant, 60 % ambient density. 

since been a disaster. At the same time, the contour lines plotted in Fig. 9 show 
a minimum of diffusion, demonstrating the advantage of the mixed Eulerian- 
Lagrangian capability. Additional effects of the two spheres rising side-by-side 
can be seen in the flow patterns plotted in Fig. 11. Shown in the top frame is a 
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4 
FIG. 10. A portion of the computing grid and the marker particle configuration, both in the 

yz plane of symmetry are shown at the same times as in Fig. 9. The expansion of the mesh is 
indicated here and in Fig. 9 by a changing postion of the grid boundaries relative to a tied 
viewing position. 

perspective view of vectors depicting the velocity in the vertical plane through 
the two spheres. The bottom frame is a perspective view, looking down on the 
mesh, of vorticity vectors showing the pair of distorted vortex rings. Evidence of 
the vortex ring distortion, present in both the velocity and vorticity field plots is 
seen primarily as a thinning and raising of the vortex rings in the area between 
the spheres. 

B. Incompressible Flow 
To illustrate an entirely different capability of the BAAL program, we have 

examined the steady flow of an incompressible fluid around a 90” bend in a tube. 
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For calculations such as this in the incompressible limit (here the sound speed is 
set to 1015), it is best to bypass the calculation of pressure for phase one as an 
equation of state function of density and internal energy. It is better to use instead, 
the pressure left from the preceding phase-two iteration as a first guess for the 
next cycle. The reason is that small fluctuations in density from phase-three 
fluxing may result in large pressure fluctuations difficult for the phase-two iteration 
to overcome. As a rule of thumb if the calculation has a sound speed significantly 
larger than U/G/~, where u is a typical fluid speed and E is the phase-two convergence 
criterion, the calculation should be considered incompressible and this procedure 

FIG. 11. Late time velocity distribution in the yz plane of symmetry (top half) and vortex 
rings as viewed by looking down on the entire double burst configuration. The vortex rings are 
formed by plotting vorticity vectors. 

should be followed. For fully incompressible flow, it is the task of the iteration 
process to adjust the velocity field, by calculating changes in pressure, so that the 
incompressibility condition, V . u = 0, is everywhere satisfied. In principle this 
could be accomplished by starting from any arbitrary pressure field, but the better 
the first guess, the more efficient will be the iteration. However, the iteration 
process will always be terminated with some error, which if left unchecked could 
accumulate after many cycles. This accumulation of error can be avoided by using 
a self-correcting procedure [19] in which a cycle-to-cycle adjustment is auto- 
matically made by having the error from one cycle, expressed for each computa- 



158 WILLIAM E. PRACHT 

tional cell as D = u, + v, + w, , serve as a source term for the iteration for the 
next cycle. This effectively limits the accumulation of incompressibility error, even 
with a relatively coarse pressure iteration. 

Velocity profile, tube radius, and viscosity were chosen for the calculation 
shown in Fig. 12 to represent the flow of blood in an artery. In this example, 
the calculational mesh, shown in Fig. 12a, is held fixed with respect to the fluid, 
but having the walls move in an arbitrarily prescribed manner or in response to 
the fluid motion is well within the capability of the method. 

Velocity vectors and contours of constant pressure are also shown in the figure. 
We have, in this calculation, taken the horizontal plane through the tube center 
as a plane of symmetry and calculated only the bottom half. Figure 12c is a 

a. 

FIG. 12. Calculation of incompressible flow around 90” bend. Shown are perspective view 
plots of the computing grid (a) together with velocity vectors and pressure contours (b) and (c). 

perspective view plot from above the tube and shows the velocity and pressure 
distribution in this plane of symmetry. Figure 12b plots these variables in a vertical 
cross section through the center of radius of curvature. The velocity vectors here 
have been enlarged to better illustrate the secondary flow pattern. The pressure 
gradient across the pipe to balance the centrifugal force is evident in both 
Figs. 12b and 12~. 
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